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Uncertain Times and Early Predictions of Bank Failure 

 

Abstract  

The Great Financial Crisis shows that bank failure in the United States, while rare, is a concern 
during uncertain times.  Our interest is in the ability to predict future failures at the start of a 
crisis, when the recent past has few events on which to base our inferences.  We show that 
policymakers using estimates based on the S & L crisis would identify in early 2009 that 2.0% of 
banks were in critical condition and 7.0% were unhealthy. This is comparable to the 1.7% of 
banks that failed within a year and the 3.9% of banks that would fail during the crisis.  
  

1. Introduction 
 

When Lehman Brothers filed for bankruptcy on September 15 of 2008, it became quite 

clear to everyone that the financial sector was again in crisis and that commercial banks in the 

United States and elsewhere were at a heightened risk of failure.  The magnitude of the risk to 

banks was unclear at the time, as the previous fifteen years had seen, on average, less than eight 

failures a year in the United States and two years (2005, 2006) with none.  Traditional early 

warning models of bank failure rely on the recent pattern of previous failures to base their 

predictions.  With few recent failures to draw from, it would seem natural to look at a past period 

of crisis to guide US policymakers’ predictions in late 2008 of the banks that would fail 

subsequent to the Great Financial Crisis.  Previous research (Cole, Cornyn, and Gunther, 1995; 

Cole and Gunther, 1998) shows that the statistical models used by the Federal Reserve were 

quite accurate in predicting failures during the last major banking crisis of 1985 – 1992, referred 

to as the Savings and Loans (S & L) crisis.  These models’ predictions are based on the financial 

conditions of banks that are captured in their call reports and reflect measures of banks’ capital 

adequacy, asset quality, management quality, earnings, liquidity, and sensitivity to market risk 

(CAMELS).  Cole, Cornyn, and Gunther (1995) and Cole and Gunther (1998) find using model 

estimates based on data from an earlier year during the S & L crisis enables them to accurately 
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predict failures out-of-sample later during the same crisis.  We consider whether failure patterns 

established during the S & L crisis are also useful in predicting failures at the start of the Great 

Financial Crisis.   

 Several studies (Cleary and Hebb, 2016; Cole and White, 2012; DeYoung and Torna, 

2013; Jin, Kangaretnam, and Lobo, 2011; Ng and Roychowdhury, 2014) examine bank failures 

during the Great Financial Crisis.  Similar to Cole, Cornyn, and Gunther (1995) and Cole and 

Gunther (1998), these studies use data exclusive to a particular crisis period for both their 

modeling and evaluation purposes.  The contributions of these studies provide policymakers 

important insights into the factors that influence failure during the financial crisis.  For example, 

Jin, Kangaretnam, and Lobo (2011) find that a bank’s choice of auditor plays a role in failures 

during the crisis, as does treatment of loan loss reserves as regulatory capital (Ng and 

Roychowdhury, 2014).  DeYoung and Torna (2013) find that a banks’ exposure to non-

traditional banking activities (insurance underwriting, securitization, investment banking, and 

venture capital) puts a bank at a higher risk of failure during the Great Financial Crisis.  The 

issue from the policymaker’s perspective is that the usefulness of these models’ estimates is 

retrospective.   In other words, they are useful in helping to understand the conditions that 

contribute to failure after the crisis period examined has passed, while their relevance to failures 

in a future crisis is yet unclear.    

This paper follows the observation made by Cole and White (2012) that the same 

financial conditions influencing bank failures in 2009 also affected failures during the 1980s 

(Cole and Gunther, 1998; Lane, Looney, and Wansley, 1986; Thomson, 1992; Whalen, 1991).   

Our focus differs from Cole and White (2012) and others in that we explicitly use the previous 

failure experience of banks during the S & L crisis to build a prediction model, which is applied 
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to data observed by policymakers at the start of 2009 for out-of-sample predictions of failures in 

the period 2009-2015.  In a sense, we attempt to identify initial conditions that serve as common 

risk factors of bank failures across different crises episodes, which allow for the creation of risk 

scores at the start of a subsequent crisis.  If these risk scores are accurate, then policymakers in 

early 2009 would have a means of assessing risks to banks early at the start of the crisis. It would 

also suggest lessons learned from the Great Financial Crisis may help predict risk exposure 

during the next crisis.    

We assess the risk of bank failure using both logit and survival models.  Whereas others 

(Cole and Wu, 2010; Mayes and Stremmel, 2014) focus on the relative accuracy of the two 

models, we focus on the different information that each model provides policymakers at the start 

of a crisis.  The logit model’s estimates using data from the S & L crisis can correctly identify 

106 of the 129 (82%) banks that actually fail within a year using year-end financial data from 

2008 and a cutoff established in the earlier period.  Our Cox proportional hazards model uses 

estimates from the S & L crisis and year-end data from only 2008 to predict risk scores and the 

survival experience of banks throughout the period 2009-2015.  We show that our model’s 

prediction of risk of failure is as accurate later in the crisis period as it is early in the crisis 

period, which indicates banks’ initial financial conditions are good for assessing the risk to banks 

throughout a crisis period.  We measure accuracy with a time dependent version of the area 

under the Receiver Operating Characteristic (ROC) curve (Heagerty and Zheng, 2005).  

Policymakers, using our Cox estimates and classification of risk scores, would identify in early 

2009 that 2.0% of banks were in critical condition, 7.0% were unhealthy, and 91% were healthy. 

This is comparable to the 1.7% of banks that failed within a year, the 3.9% of banks that would 

fail later during the crisis, and the 94.3% that remained healthy throughout. 
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Our paper contributes to the literature, as we demonstrate models of bank failure are 

subject to the uncertainty of which variables to include in the model’s specification.  Cole, 

Cornyn, and Gunther (1995, p. 6) note that the Federal Reserve identifies approximately thirty 

financial variables most likely to affect the probability of bank failure.1  From this list, Cole, 

Cornyn, and Gunther (1995) use stepwise selection to determine the subset of these variables 

relevant to failures during the S & L crisis.  Bank failures, even during crises, are relatively rare 

events, and in such cases where there are many potential risk factors, predictions based on a 

single model specification are likely sensitive to variable selection (Volinsky, Madigan, Raftery, 

and Kronmal, 1997).  We use techniques of Bayesian model averaging (BMA) to base our 

inferences on estimates that explicitly account for our uncertainty of the model’s specification by 

averaging over the estimates from several different specifications.  By accounting for model 

uncertainty, we improve, relative to stepwise selection, our out-of-sample predictions of the logit 

and Cox models.    

2. Empirical models of bank failure 
 

Policymakers prefer to avoid financial crises, so when they occur, researchers often focus 

their attention on a postmortem dissection to identify the conditions that caused the crisis.  

Studies of bank failure follow this pattern, as researchers try to uncover the unique 

characteristics of banks that fail during a crisis. Chen, Chidambaran, Imerman and Sopranzetti 

(2014), for example, undertake a detailed analysis of the debt maturity structure of Lehman 

Brothers to understand the failure of the investment bank in 2008.  They observe that in 2008, 

Lehman was increasingly rolling their short-term debt forward, which would create liquidity 

1 However, Lane, Looney, and Wansley (1986, p. 516) note there is little agreement by regulators on which of these 
factors are most important. 
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problems if they were unable to refinance.  Based on the firm’s liability structure, the authors use 

changes in the firm’s market equity value and volatility to predict at the end of March 2008 that 

Lehman was 73% likely to default by year-end 2008, relative to a 33% chance at the beginning 

of the year.  Chen, Chidambaran, Imerman and Sopranzetti’s (2014) results indicate 

fundamentals (i.e., high leverage, over reliance on short-term funding, and insufficient collateral) 

were the causes of Lehman’s failure. 

History shows the Great Financial Crisis and rise of bank failures will most likely not be 

the last.  The triggers of the next crisis are also likely to differ from past episodes and are 

difficult to predict.  What remains unclear, until a subsequent crisis, is whether the lessons 

learned and the patterns of failures based on fundamentals observed during the Great Financial 

Crisis can help inform decision making at the start of the next crisis.  We explore this question 

by examining whether a prediction model based on the pattern of failures observed during the S 

& L crisis can predict failures during the Great Financial Crisis, when conditioning on banks’ 

financial conditions at year-end 2008.  The purpose of this analysis is to determine what 

policymakers, at the start of the crisis, could have inferred about the future risk of banks failing 

from the data available and from model estimates based on a past crisis. 

In general, there are two empirical approaches to modeling bank failure.2  The first 

approach models bank failure as a binary outcome, i.e., whether a bank fails in a subsequent 

2 Methods using machine learning (e.g., support vector machines and neural networks) are another approach to 
modeling bank failure that is being developed in the literature (Le and Viviani, 2018; Gogas, Papadimitriou, and 
Agrapetidou, 2018).  Le and Viviani’s (2018, 24) use of a neural network improves the accuracy of predicting US 
bank failure over a traditional logit regression model, though the difference is “not very big”.  The area under the 
receiver operating characteristic curve (ROC) is 79.6% for their logit model and 81.9% for their neural network.  
The logit model though outperforms the predictions of the support vector machine, where the area under the ROC is 
71.5%. 

 

5 

 

                                                            



period conditioning on a set of observables at a given point in time.  These models use a cross-

section of banks and estimate the probability of bank failure using either probit (Cole and 

Gunther, 1998; Cole, Cornyn, and Gunther, 1995; Wheelock, 1992) or logistic regression (Arena, 

2008; Cole and White, 2012; Ng and Rowchowdary, 2014).  In their early warning model, Cole 

and Gunther (1998) use bank financial data from year-end 1985 to predict whether a bank fails in 

the two year period 1986(Q2) – 1988(Q1).  Their results indicate that lower capital ratios, 

declining asset quality, lower earnings, and less liquidity play significant roles in failures during 

the S & L crisis period.   

The predictions from a binary response model are probabilities, ˆ ip .  Therefore, one must 

adopt a classification rule, c, to distinguish between banks predicted to fail ˆ( )ip c>  from those 

that are not ˆ( )ip c≤ .  We measure accuracy by the sensitivity and specificity of the model’s 

classifications.  Sensitivity measures the fraction of banks predicted to fail ˆ( | )i ip c y> =1  

among the subset of banks that actually fail during the period examined, whereas specificity 

measures the fraction of banks predicted not to fail ˆ( | )i ip c y≤ = 0  among the subset that do not 

fail.  One may also use error rates to consider the model’s classifications.  A type – 1 error 

consists of a bank predicted not to fail which fails, whereas a type – 2 error consists of a bank 

that is predicted to fail but does not fail.  Type-1 errors are more costly to banks, as they may 

result in costs from failures that could have been potentially avoided if predicted, while type – 2 

errors entail diverting limited supervisory resources to a healthy bank.  Mathematically the type 

– 1 error rate is equal to one minus the sensitivity, and the type – 2 error rate equals one minus 

the specificity.  For a given model specification a tradeoff exists between the two types of errors, 
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i.e., reducing the cutoff to classify a failing bank reduces type – 1 errors at the expense of more 

type – 2 errors, whereas raising the cutoff has the opposite effect.    

Cole and Gunther (1998) find that their probit model estimates from 1985, when applied 

to data from year-end 1987, result in out-of-sample failure predictions with a type-1 error rate of 

9.8% for a type – 2 error rate of 10%.   Using estimates from 1987 and data from 1989 the type – 

1 error rate is 7.9% for a type-2 error rate of 10%.  A plot of type-1 versus type – 2 error rates, 

across the range of classification cutoffs, allows for more general and visual comparison of the 

model’s classifications.  For example, Cole and Gunther (1998) show that their model 

specification estimated with financial data from call reports has lower type – 1 errors than a 

specification estimated with a bank’s composite CAMELS rating over the range of type – 2 

errors.3  A closely related measure of performance is the receiver operating characteristic curve 

(ROC), which plots the tradeoff between the model’s sensitivity relative to type – 2 errors.  The 

area under the ROC curve (AUC) is a statistic that summarizes the model’s predictive accuracy 

over the range of cutoffs and measures the probability a randomly selected failed bank has a 

higher predicted risk score than a bank that does not fail (control).  A value equal to one 

indicates the model’s predictions are able to completely discriminate between failed and non-

failed banks, whereas a value equal to 0.5 indicates the predictions are no better than pure 

chance. 

Logistic and probit regression models of bank failure have also been applied using panel 

data (Betz, Oprica, Peltonen, and Sarlin, 2014; Jin, Kangaretnam, and Lobo, 2011; Mayes and 

Stremel, 2014).  An important aspect of bank failures is that once a bank fails, it cannot possibly 

3 CAMELS ratings assigned by regulators to banks during examinations are not made publicly available.  
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fail again. The econometric issue this poses when using panel data with failures is observations 

are no longer independent of each other over time, which results (Shumway, 2001) in biased and 

inconsistent estimates.  Shumway (2001) shows this issue can be alleviated by correcting the 

standard errors of the multi-period logit model to account for the lack of independence, and that 

the resulting specification is equivalent to a discrete time hazard model.  DeYoung and Torna 

(2013) and Cole and Wu (2010) use this approach in their analyses of bank failure.   

An alternative, which we use, is to directly model the time to bank failure using a 

survival model.  The dependent variable in a survival model is the time to failure, iT , which is 

the difference in time (days, years, etc.) between when a bank becomes at risk of failure and 

when it either fails, or if it does not fail, the end of the study period.  Observations in the latter 

case are said to be censored.  Studies of bank failure (Brown and Dinc, 2005; Lane, Looney, and 

Wansley, 1986; Mayes and Stremel, 2014; Ng and Rowchowdary, 2014; Whalen, 1991; 

Wheelock and Wilson, 1995, 2000) using a survival model typically specify a Cox proportional 

hazards model.4  Estimates from the model allow one to specify the hazard function at time t, 

which represents the rate of failure at a point in time, conditioning on failure having yet to occur.  

This differs from the logit model that considers the proportion of failures within a time period.  

The hazard of failure ( ), , ( ) xh t x h t e ββ = 0 is a function of two terms. 5  The baseline hazard,

( )h t0 , characterizes how the hazard of bank failure changes relative to time at risk, while xe β  is a 

feature of the Cox  model that characterizes how the hazard of bank failure depends on the 

control variables.  The model is said to be semi-parametric in the sense that the baseline hazard’s 

4 Arena (2008) instead uses a fully parametric Weibull regression survival model.   

5 The notation for the hazard model used here is similar to Hosmer, Lemeshow, and May (2008). 
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( )h t0 dependence on time is unspecified and the coefficients enter the model linearly.  The 

effects of the covariates on survival are evaluated with a transform of the coefficients using the 

hazard ratio (equation 1):  

 ( ) ( )( ), ,
( )

 
x x

x x
x x

h t e eHR t x x e
h t e e

β β
β

β β
−= = =

1 1
1 0

0 0

0
1 0

0

 (1) 

The hazard ratio (HR) is a measure of relative risk that does not depend on time and reflects the 

change in a ratio of rates from a given change in covariate x’s values, ( x x−1 0 ).   

Using the hazard function, one is also able to specify a survival function

( ), , ( ) xS t x S t e ββ = 0 , where the baseline survivor function ( )S t0  is a function of the cumulative 

hazard function ( )( ) H tS t e−= 0
0 .  The survival function represents the probability of observing a 

survival time greater than time t and is mathematically related to the probability of observing a 

failure time less than t, i.e.,  ( ) ( ), , , ,S t x F t xβ β= − 1 .  One way to interpret the linear 

prediction of xβ  in the survival function is as a risk score, ˆ
i iM x β= , such that banks with 

similar risk scores experience similar survival rates at different points in time.   

 We use a time dependent measure of sensitivity and specificity introduced by Heagerty 

and Zheng (2005) to compare the survival model’s accuracy to that of the binary response 

model.6  At any point in time, t, we observe the subset of banks still at risk that fail in the current 

period ( )iT t= , which are referred to as incident cases, and those that remain alive into the future

( )iT t> , i.e., dynamic cases.  Our survival model predicts a bank will fail at time t if their 

6 The time dependent ROC and AUC analyses are conducted using the R-package risksetROC (Heagerty and Saha-
Chaudhuri, 2012).    
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estimated risk score is greater than c, a user defined cutoff.  Heagerty and Zheng (2005) define 

the incident sensitivity of the model’s predictions as the proportion of banks that fail at time t 

(incident cases) with risk scores greater than c, i.e., ( | )i iP M c T t> = .  Dynamic specificity 

(Heagerty and Zheng, 2005) refers to the proportion of banks that remain alive at time t 

(dynamic cases), with risk scores less than or equal to the cutoff, i.e., ( | )i iP M c T t≤ > .  Incident 

sensitivity and dynamic specificity are time dependent in the sense that their values vary by 

follow up time t.  Using the incident sensitivity and dynamic specificity measures, one is then 

able to generate ROC curves for different follow up times that span the range of cutoff scores 

and calculate measures of the AUC that vary with follow up time.  A time dependent AUC(t) 

value allows for evaluating how the predictive performance of the model changes with time, 

which is important here, as our interest is in developing a model that uses only initial conditions 

to achieve both good short-term and long-term predictive performance during a crisis period.  

Experience shows that resolving bank failures during a crisis can take years after an 

initial decline in financial condition.  Shumway (2001, p. 102) notes that when sampling periods 

are long, controlling for time at risk is important, which is the case when trying to assess the risk 

of bank failure during a crisis.  Therefore, we use estimates of the static logit model to predict 

failures in the short-run, i.e., within a year of our observed initial conditions. We rely on 

estimates from the Cox proportional hazards model that account for time at risk to model a 

bank’s risk of failure throughout the entire crisis period.  Our Cox model though does not use 

time-varying covariates, i.e., explanatory variables that change over time, as we condition our 

model’s predictions only on the initial conditions that are observed at the start of a crisis.   

 The benefit of estimating the model using only initial conditions (i.e., time-fixed 

covariates) is we can generate predictions of the estimated survival profiles of banks based on 
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their different risk scores.  This allows policymakers to assess, at the start of a crisis, the 

variation of risk exposure in future bank failures and across the banking system.  With time-

varying covariates the survivor function is no longer interpretable in this manner and one loses, 

more generally, the ability for such predictions, as the survival time in the future then depends on 

covariates that are not yet observed.  In addition, we observe that our initial conditions are 

equally well suited to the prediction of failures early in the crisis as they are for later follow up 

times based on little variation of the time dependent AUC(t) over time.   

3. Bayesian model averaging 

 Our analysis uses Bayesian model averaging to incorporate our uncertainty as to which 

dependent variables we should include in our model’s specification.  Rather than base inference 

on a single model specification, the estimates from Bayesian model averaging (BMA) use a 

weighted average of estimates from several specifications, with weights determined by the 

posterior support each receives from the data.  BMA offers a theoretically appealing method of 

accounting for uncertainty in model specification as it avoids potential issues with “p-hacking” 

(Harvey, 2017), where researchers choose to report only the estimates from the model 

specifications that support their hypotheses.   The result of which Harvey (2017) notes tends 

towards biased findings that are not robust under subsequent testing.  By bringing a Bayesian 

approach to data mining, it has been shown (Raftery, Madigan, and Volinsky, 1995; Volinsky, 

Madigan, Raftery, and Kronmal, 1997) that BMA offers better predictive performance than other 

methods, such as stepwise techniques.  We apply BMA to both logistic and Cox proportional 

hazards models and the discussion below generalizes to either type of model with differences 

between the two as noted.      
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For our purpose, a model specification is defined by a linear combination of variables.  

Both the Cox and logistic models are non-linear, though the variables enter the models in a linear 

fashion.  The set of model specifications of interest here include each of the different linear 

combinations of variables that are identified as potentially relevant to predicting bank failure.  

Identifying p variables of interest implies there are then K = 2p different model specifications to 

consider.  The weight given to each of the K different models’ estimates are determined by the 

specification’s posterior model probability.  The posterior distribution of our model parameters 

(β) given the data (D = y, X) is equal to 

 
1

( | ) ( | , ) ( | )
K

k k
k

P D P M D P M Dβ β
=

=∑  (2) 

The first component of equation 2, ( | , ),kP M Dβ  represents the posterior distribution of 

estimates from the different model specifications.  Volinsky, Madigan, Raftery, and Kronmal 

(1997) show this distribution can be approximated by applying maximum likelihood to the K 

different models in the case of logit and Cox models.  The second component, ( | ),kP M D  is the 

posterior model probability, i.e., weights, which represents for a given model specification the 

posterior likelihood the specification is the true model that generates the data.  The sum of the 

weights across models is equal to one.  By Bayes’ rule and the law of total probability the 

posterior model probability is 

 

1

( | ) ( )( | )
( | ) ( )

k k
k K

l l
l

P D M P MP M D
P D M P M

=

=

∑
 (3) 

where P(D|Mk) is the likelihood and P(Mk) is the prior probability that model Mk is the true 

model.  We assume a uniform prior such that each of our models under consideration is as 
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equally likely to be the true model as another.7  If, for example, one had strong information that 

the next crisis would be driven by exposure to non-guaranteed private student loan debt, then we 

could incorporate this into our prior for inclusion of the variable in the model. 8  A uniform prior 

though is reasonable without strong prior beliefs.  The PMP then simplifies to become   

 

1

( | )( | )
( | )

k
k K

l
l

P D MP M D
P D M

=

=
∑

 (4) 

The integrated likelihood, also referred to as the marginal likelihood, is found by integrating over 

parameter vector βk  

 ( | ) ( | , ) ( | )
k

k k k k k kP D M P D M P M d
β

β β β= ∫  (5) 

where βk is a vector of parameters, P(D|βk, Mk) is the likelihood, and P(βk|Mk) is the prior 

density of βk under model Mk.  Volinsky, Madigan, Raftery, and Kronmal (1997) suggest the 

integral in equation 5 can be approximated using the Laplace method by using a function of 

Schwarz’s (1978) Bayesian information criterion.   

 
'

'
0

1( | ) exp
2

log( )

k k

k k k

P D M BIC

BIC BIC BIC LRT p N

 ≈ − 
 

= − = − +

 (6) 

BICk and BIC0 are the values of the Bayesian information criterion for model specification k and 

the null model (constant only), respectively.  The difference of which is equal to the likelihood 

7 Fernandez, Ley, and Steel (2001) note the assumption is common when there is not strong prior information to 
suggest otherwise.  Raferty (1995) finds the assumption on priors has little impact on the posterior distribution.     

8 Sheila Bair, former Chairman of the FDIC (2006-2011), has been vocal (Nasiripour, 2016) in noting the next crisis 
may be driven by student loans, due to similarities between the current market for student loans and the pre-crisis 
mortgage market, whereby easy access to credit has led to higher tuition prices and over extended borrowers.  
Unfortunately, call reports of commercial banks aggregate federally guaranteed and private student loan debt with 
other consumer loans. 
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ratio statistic subtracted from the number of parameters in model k, pk, multiplied by the natural 

log of the number of observations.  For the logistic model, the number of observations in 

equation 6, N, is equal to the sample size (Raftery, 1995).  In the case of the Cox model, one 

could use the number of units under observation, the total time of all units under observation, or 

the number of events, i.e., failures.  The latter choice, which we use below, is preferred by 

Raftery, Madigan, and Volinsky (1995).  

To test hypotheses under Bayesian model averaging one uses Bayes factors.  A Bayes 

factor allows us to compare the evidence in favor of one hypothesis relative to another.  Consider 

two hypotheses, 0H  and 1H , where we have prior beliefs as to their validity given by 0( )P H and

1( )P H .  Using Bayes rule, it can be shown that the odds of observing the null relative to the 

alternative are given by: 

  0 0 1

1 1 0

( | ) ( | ) ( )
( | ) ( | ) ( )

P H D P D H P H
P H D P D H P H

=  (7) 

The posterior odds of the null hypothesis being true is equal to the Bayes factor multiplied by the 

prior odds in favor of the null.  If each hypothesis is a priori equally likely, then the posterior 

odds of the null is simply equal to the Bayes factor.  A Bayes factor is an odds ratio of 

probabilities that can be converted into the probability that the null hypothesis is true.9  

Therefore, a Bayes factor of 20 is interpreted as the null hypothesis being 20 times more likely 

than the alternative, which corresponds to a 95% probability of the null being true and a 5% 

probability in favor of the alternative.   

9 The odds ratio equals = 0
0

0

( | )( | )
1 ( | )

P H DH D
P H D

Ω =
−

 therefore 0
0

0

( | )( | )
1 ( | )

H DP H D
H D

Ω
=

+Ω
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 Bayes factors differ fundamentally in interpretation from p-values found in the Neyman-

Pearson approach to statistics.  A p-value measures the probability of observing an outcome in 

the data more extreme than what is assumed under the null hypothesis, and in a sense represents

0( | )P D H .  A p-value of 0.05 indicates the null hypothesis is rejected 5% of the time, when it is 

in fact true, and yet it does not tell us the probability the null hypothesis is true 0( | )P H D .  An 

example follows by Edwards, Lindman, and Savage (1963, pp. 221-222) that highlights this 

distinction.  The frequentist perspective is that by assuming the null hypothesis is true, the t-

statistic from a two-tailed t-test, with many degrees of freedom, will exceed 1.96 2.5% of the 

time.  Similarly, 0.5% of the time the value will exceed 2.58, which implies that 2% of the time 

the statistic will lie between 1.96 and 2.58, when the null hypothesis tested is true.  It might 

appear the data strongly favor the alternative if the observed test statistic lies within this interval.  

Consider an alternative, when the null is false the statistic lies uniformly between the values -20 

and 20.  In this example the value of t lies between the values of 1.96 and 2.58 with probability 

1.55%.  Given the alternative, the data favor the null.   

 Bayes factors are a nice alternative to p-values, which can overstate the evidence against 

the null in large samples (Greene, 1997; Harvey, 2017; Leamer, 1978).  Specification searches, 

such as stepwise regression, can further magnify this problem, resulting in statistically significant 

relations in simulated data that do not exist.  Freedman (1983) demonstrates this point using data 

where the 100 observations in each of his 51 variables (y, X1…X50) are white noise, i.e., 

independent draws from the standard normal distribution.  An exploratory regression is first run 

on all 50 explanatory variables. After removing the variables that are not significant at the 25% 

level, the model is re-run.  Freedman (1983) finds that 6 of the 15 variables used in his second 

pass are significant at the 5% level, when by construction there is no relation between the data.  
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Repeating this same exercise for a different random sample, Raftery, Madigan, and Hoeting 

(1997) observe 10 of 18 variables in the second stage were significant at the 5% level, and 15 

variables were selected using stepwise regression, with 10 statistically significant at the 5% 

level.  Applying BMA to this simulated data, Raftery, Madigan, and Hoeting (1997) observe that 

the only specification averaged over was the null model, i.e., a specification containing only an 

intercept, which by construction is the model that generated the data.  Basing our inferences on 

Bayes factors reduces the number of false positives that Harvey (2017) warns of and we are left 

with a better understanding of the underlying relations in our data and an explicit accounting for 

our uncertainty in the model’s specification.     

 We apply BMA to the logit and Cox models using the R-package BMA (Raftery, 

Hoeting, Volinksy, Painter, and Yeung, 2018).  To increase the speed of estimation, the routine 

narrows down the number of models to average over by eliminating specifications that receive 

little support from the data.  These are specifications where the odds are more than twenty to one 

in favor of another model specification being the true model.  Excluding these specifications has 

little impact on our inferences given the low weight each would receive if included.  The routine 

provides estimates of the posterior means and standard errors of the coefficients, which can be 

easily compared to their single equation MLE counterparts.  For each variable, the routine 

calculates the posterior probability that the coefficient is non-zero ( 0 | )kP Dβ ≠ , referred to as 

the posterior effect probability (PEP).  Raftery (1995) considers the statistical evidence of an 

effect to be weak, positive, strong, and very strong according to a commonly used rule of thumb 

based on Bayes factors of 1, 3, 20, and 150, which correspond to PEP values of .5, .75, .95, and 

.99 on the probability scale, respectively.   

4. Data 
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We draw the control variables we use from the December Report of Condition and 

Income (call report) data provided by individual banks to the Federal Reserve, Federal Deposit 

Insurance Corporation, the Comptroller of the Currency, and are distributed by the Federal 

Financial Institutions Examination Council.  Our sample includes commercial banks, state-

chartered banks, and cooperative banks.  We rely on theory and previous research to identify the 

list of financial variables most likely related to bank failure.  Also guiding this choice is our 

desire to focus on the failure experience of banks during the S & L crisis for basing predictions 

of failures during the Great Financial Crisis.  The twenty-five variables we use include the year-

end call report items considered by the Federal Reserve for use in their Financial Institutions 

Monitoring System (FIMS) model (Cole, Cornyn, and Gunther, 1995) to predict banks’ risk of 

failure.10  This implies there are more than 33.5 million (225) different specifications one could 

consider.  As Cole, Cornyn, and Gunther (1995) note, these variables were selected based on the 

Fed’s review of the literature and their use in examination reports.  Further, these measures were 

strong predictors of failures during the S & L crisis.  Table 1 lists the measures, and an online 

appendix includes the complete definitions.  Other than the banks’ age and size, we scale each of 

the control variables by total assets.  End-of-year (December) call report data for an institution 

become available six hours after their submission. Their submission is due no more than 30 

calendar days after the report date which makes the December data available as of February 1 the 

following year.11  To ensure policymakers are able to observe year-end data prior to failures 

10 The FDIC uses a similar variable in their statistical CAMELS off-site rating (SCOR) model to predict changes in 
CAMELS ratings (Collier, Forbush, Nuxoll, and O’Keefe, 2003).   The series, RCFD1406, loans past due 30-89 
days and still accruing interest is included in both the government’s FIMS and SCOR models.  The series is not used 
here as it is confidential for the period 1984-1990. 

11 See the call report instructions available on the FFIEC website for further discussion of the current reporting 
guidelines.  https://www.ffiec.gov  
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occurring, we analyze failures beginning in February of the year following the availability of 

bank financial data. 

[Insert Table 1 about here] 

The FDIC’s list of failed banks identifies whether a bank fails and the date of failure.  At 

year-end 1984 there were 14,024 banks in our sample, and among these banks, 1,100 would fail 

(7.9%) during the period 2/1/1985 - 2/1/1994.  Table 1 reports and tests the difference in mean 

financial conditions and other characteristics between failed and non-failed banks.  Banks that 

failed during the S & L crisis have characteristics that are significantly different than their 

counterparts in 1984.  They were generally younger banks that had weaker performing loans, less 

liquidity, a higher reliance on jumbo CDs and brokered deposits among their liabilities, and 

higher asset concentration in commercial real estate and C & I loans.  Interestingly, failed and 

non-failed banks had similar levels of equity relative to total assets (8.9%), which reflects the 

overall weakness of the banking system subsequent to years of rising interest rates.  We find no 

significant differences in federal funds purchased or sold, volatile liability expenses, and the 

shares of assets in either consumer or agriculture loans.    

As of year-end 2008, there were 7,441 banks in our sample of which 422 failed (5.7%) in 

the period 2/1/2009 – 2/1/2015.  We find similar generalizations in the Great Financial Crisis as 

to the S & L crisis. The failing banks in the Great Financial Crisis were younger, had weaker 

performing loans, less liquidity, and a higher reliance on jumbo CDs and brokered deposits 

among their liabilities. They also had a higher share of commercial real estate loans.  Failed 

banks during the Great Financial Crisis also had lower shares of consumer and agriculture loans.  

However, failed banks in the Great Financial Crisis were significantly less capitalized (8.0%) 
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than their counterparts (11.5%) and were even less capitalized than banks during the S & L crisis 

(8.9%).   

A few other generalizations appear between the two crisis periods.  Banks in the later 

crisis period were less reliant on core deposits, as their share among total assets decreased among 

non-failed (failed) banks from 15.8% to 10.8% (16.8% to 6.3%).  The reduction in demand 

deposits, along with reductions in reserve requirements over time, likely contributed to the 

decrease in cash held by banks.  This reduction in cash was also part of a more general trend of 

banks holding fewer liquid assets – securities held as a share of assets declined from 28.4% to 

20.3% (15.8% to 11.1%) among non-failed (failed) banks.  There were also notable changes to 

the composition of banks’ loan portfolios over time.  The shares of C & I, consumer, and 

agriculture loans decreased, whereas the shares of commercial real estate and non-commercial 

real estate (omitted category) increased.   

5. Results and discussion 

5.1. Logit models with rolling year-ahead predictions  

The goal of our analysis is to examine whether the bank failure experience observed 

during the S & L crisis can predict at year-end 2008 the failures observed during the Great 

Financial Crisis.  Our first analysis uses logistic regression to try and identify those banks that 

are at imminent risk of failure at year-end 2008.  Similar to the Federal Reserve’s FIMS model, 

we use a cross-section of banks’ financial data at year-end to estimate whether failure occurs in 

the following year.  We use two approaches to select variables for the model’s specification for 

comparison purposes.  The first approach uses Bayesian model averaging and the latter, similar 
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to the FIMS model specification (Cole, Cornyn, and Gunther, 1995) applies stepwise selection, 

which we determine on the basis of Akaike’s information criterion.12  

For each of the years 1984-1991, we estimate a rolling prediction model of bank failures 

in the year ahead with the two variable selection approaches.  That is, we use year-end data from 

1984 to predict whether failure occurs between 2/1/1985 and 2/1/1986, and then use 1985 year-

end data to predict failures between 2/1/1986 and 2/1/1987, and so on.  Results (we report these 

in the appendix) from the BMA analysis reveal there exists uncertainty as to the model’s true 

specification with the number of specifications averaged over ranging from 4 (1984) to 37 

(1985), with an average of 18 specifications.13  Even when uncertainty is minimal, e.g. 1984, the 

two approaches suggest that different factors are important to predicting failures.  The model 

chosen by stepwise selection using the 1984 data we report in Table 2 includes these several 

measures that are not averaged over in the BMA model: federal funds sold (p-value 0.020), 

provisions for loan losses (p-value 0.085), and securities (p-value 0.002).  It also includes age (p-

value 0.003) and cash (p-value 0.026), which receive little support from the data under BMA.  

We observe that p-values from a single model specification tend to overstate the evidence of an 

effect in the presence of model uncertainty.  Based on our BMA estimates across the years (see 

online appendix), we find evidence against there being an effect from federal funds purchased, 

volatile liability expense, and consumer loans, as each has a posterior effect probability (PEP) 

12 An alternative to stepwise selection to find the best single model specification is the use of a biased regression, 
such as the lasso approach.  Lasso (Tibshirani, 1996) is similar to ridge estimation, but imposes different restrictions 
where many of the coefficient estimates are instead shrunk to equal zero, i.e., a subset of variables are used in the 
predictions.  This adds the parsimony found in stepwise models with the potential of improved prediction over linear 
models.  Lasso and ridge methods are typically reserved for high-dimensional data (thousands of variables) and 
result in highly biased coefficient estimates, which make their interpretation difficult (Goeman, 2010).     
13 An online appendix contains the logit model estimates from BMA and stepwise selection for each of the years 
1985-1992.   
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less than 5%.  The measures of cash, charge-offs, insider loans, and age each have PEPs less than 

50%, which indicate they do not receive support for influencing failures.   

[Insert Table 2 about here] 

Our interest is primarily on the models’ out-of-sample predictive performance.  We 

therefore focus less on the potentially different marginal effects implied by the two approaches, 

i.e., differences in the coefficient estimates and their standard errors and are less concerned with 

issues of multicollinearity in our candidate regressors.   Despite the observed differences in the 

specifications across the two approaches, the out-of-sample type – 1 versus type – 2 error rates 

are quite similar throughout the S & L crisis period (1984-1992).  To be clear, the out-of-sample 

predictions we report in Table 3 for prediction year 1985 are determined using the model 

estimates from 1984, along with financial data from year-end 1985 to predict failure outcomes 

between 2/1/1986 and 2/1/1987.   For a given type – 2 error rate of 10% there is a type – 1 error 

rate that ranges over time between 1.7% and 23.6% for BMA and ranges between 3.1% and 

22.0% for the stepwise model (see Table 3).  BMA has a lower type – 1 error rate in four of the 

eight rolling predictions and is equal in another year, relative to the stepwise model.  The model 

estimated using 1987 year-end data has the lowest prediction error.  In the left panel of Figure 1, 

we plot the errors from this specification and observe there is little definitive difference in the 

predictive discrimination of the two variable selection methods across the range of type – 2 

errors.     

[Insert Table 3 and Figure 1 about here] 

An issue with rolling predictions described above is that they rely on failures in the 

previous period to make predictions in the next.  That is, our model requires failure episodes to 

estimate the model and in the years (1993-2008) following the S & L crisis there were few bank 
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failures in any given year to update the models’ estimates.  Therefore, the right panel of Figure 1 

shows how well the prediction models’ estimates from the S & L crisis years are able to predict 

failures between 2/1/2009 and 2/1/2010 based on year-end data from 2008, i.e., early into the 

subsequent crisis.  We find that the accuracy of the models diminishes for predictions in the 

Great Financial Crisis relative to predictions during the S & L crisis, which is not surprising 

given the predictions are based on estimates from more than seventeen years in the past, rather 

than the previous year.  However, the comparison we show in Table 3 of out-of-sample type –1 

and type – 2 errors at the start of the Great Financial Crisis period reveals that the estimates of 

BMA models outperform stepwise regression in each year, other than 1985 for a given type – 2 

error rate of 10%, and by a wide margin in some years, (7.8% in 1987).  As we show in the right 

panel of Figure 1, the difference in the two models’ predictive discrimination is also 

generalizable by the lower type – 1 errors over a wide range of type-2 errors for predictions in 

2008, based on the 1987 BMA model’s estimates.   

These results suggest BMA estimates from an earlier crisis period outperform stepwise 

estimates when applied to predicting whether banks will fail in a subsequent crisis period.  

Policymakers could have used the estimates from the S & L crisis to create an early warning 

prediction during the most recent crisis.  Using the estimates and a cutoff from the 1987 model, 

which provides the lowest type – 1 error rate for a type – 2 error rate of 10% during the S & L 

crisis, the model at year-end 2008 identifies 458 banks as likely to fail in the next year and 

correctly classifies 106 of the 129 (82%) banks that actually fail in 2009.14  The limitation of the 

14 The corresponding type-2 error is equal to 4.8%.  The error rates we report in Table 3 differ as they are based on 
outcomes and thus cutoffs that are not observed at year-end 2008, which are only known to policymakers at year-
end 2009.  
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logit model is that it is not well suited for predicting failures through time given only a set of 

initial conditions.  For this we turn to a survival model to account for time at risk and the slow 

resolution of failures during a crisis.  

5.2.  Cox model of bank failure   

 We use bank financial data from year-end 2008 and a Cox proportional hazards model to 

predict banks’ time to failure during the period (2/1/2009-2/1/2015).  We follow the banks 

through 2/1/2015 (after the crisis itself) to account for the often slow resolution of failures 

following financial deterioration.  Similar to the estimation of our logit models, we use the 

failure experience observed during the S & L crisis to build an estimation model that will be 

applied out-of-sample at the start of the Great Financial Crisis.  The Cox model is estimated 

using bank financial data that is available year-end 1984 to predict this set of banks’ times to 

failure through the period 2/1/1985 – 2/1/1994.  We limit the estimation of our model to the use 

of these “initial” conditions, which allows for our predictions to be based only on the information 

available to policymakers at the start of the crisis.  Banks that do not fail during the period 

examined are said to be censored, as we do not observe their time to failure.  Censoring may 

occur due to merger, a change in charter and hence reporting requirements, or voluntary closure.  

Banks are also said to be censored if they remain in the sample through the end of the period 

examined without failing.  During the S & L crisis period (2/1/1985 – 2/1/1994) 92% of 

observations are censored, and in the out-of-sample period (2/1/2009-2/1/2015) 94% are 

censored.  The high level of censoring observed in the data adds an extra layer of uncertainty to 

estimation of the Cox model, which is not present in the logit model.   

 Estimates of the Cox model using Bayesian model averaging and stepwise selection 

appear in Table 4.  The BMA results indicate that 23 specifications were averaged over and that 
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the specification with the highest posterior model probability has a 30% likelihood of being the 

true model that generates the data.  The model specification chosen by stepwise selection was not 

included in the set of models averaged over and includes a number of variables that did not 

receive support under BMA.  The stepwise model includes cash (p-value 0.015), non-interest 

expense (p-value 0.004), dividends (p-value 0.077) , and federal funds sold (p-value 0.003) as a 

share of total assets; yet, each measure is less than 25% likely to have an effect under BMA 

based on their posterior effect probability.  In the case of dividends, where the posterior effect 

probability reported is less than 5%, we would conclude there is evidence against an effect.  Our 

estimates, consistent with Harvey’s (2017) warning, again indicate that p-values can quite 

dramatically overstate the evidence of an effect relative to their Bayesian counterparts (posterior 

effect probabilities). 

[Insert Table 4 about here] 

The left panel of Figure 2 shows in-sample predictions of the Cox model are quite similar 

across the two variable selection approaches.  The figure depicts the relation between type – 2 

and type – 1 errors based on Heagerty and Zheng’s (2005) definitions of incident sensitivity and 

dynamic specificity measured a year (365 days) at risk, i.e., 2/1/1986.  For a type – 2 error of 

10% (dynamic specificity is 90%), we find a corresponding type – 1 error rate of 47% (incident 

sensitivity is 53%) from our BMA and stepwise models.  The right panel of figure 2 displays the 

area under the ROC curve over time to measure our models’ accuracy.  The AUC is equal to 0.82 

for both BMA and stepwise models at the one-year mark, which indicates banks that fail at one 

year at risk are 82% more likely to have a risk score higher than their counterparts that survive.  

We find that the two models’ risk scores which are based on their initial financial conditions also 

provide good long-term predictive power.  This is evident as the AUC remains above 0.80 
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through time, which indicates banks’ initial conditions are as well suited to discriminate between 

failures and non-failures early into a crisis as they are later on.   

[Insert Figure 2 about here] 

 Our interest is in the ability of our models’ estimates to predict the failure experience of 

banks during the Great Financial Crisis, i.e., out-of-sample.  We apply our Cox model estimates 

based on the S & L crisis and data from year-end 2008 to predict failures in the period (2/1/2009-

2/1/2015).  We rely only on information, model estimates and data, available to policymakers at 

the start of the crisis.  The predictive accuracy of the BMA model is similar out-of-sample to the 

in-sample predictions.  For example, the AUC is greater than 0.78 during the entire time banks 

are at risk (Figure 2).  The stepwise model performs substantially worse out-of-sample and in 

relation to the BMA model.  A comparison of type – 1 and type – 2 errors at 365 days show for 

any type – 2 error that BMA has a lower type – 1 error.  The AUC for the stepwise model is 

approximately equal to 0.66 throughout the time period examined.  These results demonstrate 

that the initial conditions of banks at a start of a crisis and estimation models from a previous 

episode are useful for failure predictions during a crisis.  We also find that Bayesian model 

averaging improves our out-of-sample predictions.   

To test the sensitivity of our prediction model to the choice of initial conditions, we re-

estimate the model with year-end 1985 financial data (banks become at risk of failing starting 

year-end 1985).  The BMA estimates (we report these in an appendix) indicate 24 models were 

averaged over, and the best specification was 25% likely to be the true model.  Predictive 

accuracy of both the stepwise and BMA estimates are similar in-sample – a dynamic false 

positive rate of 10% coincides to an incident sensitivity of 59% for each model.   We find that 

BMA outperforms stepwise estimation out-of-sample, producing lower type – 1 errors (higher 
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sensitivity) for a given type – 2 error rate.  The type – 1 error of our BMA estimates is 49% 

compared to 61% from stepwise selection.  Our estimates further reveal the predictive accuracy 

is similar over time.  The AUC ranges between 0.84 and 0.80 for our BMA estimates and 

between 0.76 and 0.74 for stepwise.  It appears our Cox model’s predictions from using BMA 

are not particularly sensitive to our choice of using estimates from the model estimated with 

1984 data.   

Policymakers can use the Cox model’s estimates to draw inferences about the predicted 

survival experiences of banks during subsequent crises.  We compare the experiences of a 

representative healthy, unhealthy, and critically ill bank, where healthy banks are defined as 

having a risk score equal to the average value of banks that did not fail during the S & L crisis, 

unhealthy banks have a score equal to the average of those who failed more than a year later, and 

critically ill are those who failed within the first year.15  The risk score is equal to the linear 

portion of the proportional hazard and is useful (Hosmer, Lemeshow, and May, 2008) in 

comparing the survival experiences of different representative banks.16  In-sample, during the S 

& L crisis, the BMA model’s estimated risk scores classify 3.5% of the population of banks as 

critical, 8.1% as unhealthy, and 88.4% as healthy at year-end 1984.  For this same period, we 

observe 0.8% of banks failed within a year, 7.1% banks would fail more than a year into the 

crisis, and 92.1% remained healthy throughout.  The model provides an accurate overall 

assessment of risk to the banking system, based only on the information found in banks’ 

15 Whalen (1991) uses a similar comparison of banks to describe the survivor functions in-sample.  Lane (1984) also 
compares the survival experience of failed and non-failed banks.   

16 We provide a figure that plots the survival experience over time for each of the representative risk scores in the 
online appendix. 
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conditions at the start of the crisis.  If one applies the same classification criterion from 1984 to 

banks’ out-of-sample in 2008, we predict that 2.0% of banks are in critical condition, 7.0% are 

unhealthy, and 91% are healthy as of year-end 2008.17  We compare this to the 1.7% of banks 

that failed within a year, the 3.9% of banks that would fail later during the crisis, and the 94.3% 

that remained healthy. The difference in the model’s performance out-of-sample, with respect to 

the classification of unhealthy banks, i.e., prediction of more failures than occurred, is likely the 

result of the unprecedented interventions taken by the government to stabilize the banking 

system.  Therefore, the model’s predictions should be viewed as an “early warning” of what may 

occur prior to any intervention.   

5.3. Predictions for the next crisis  

Our results above suggest that when the next banking crisis strikes, policymakers should 

look to the failure experience of the most recent financial crisis to guide their predictions of bank 

failures.  Table 5 reports the Bayesian model averaging estimates of the logit and Cox models 

applied to data from the Great Financial Crisis.  The logit model is estimated using year-end data 

from 2008 to predict whether banks fail in 2009.  For a type – 2 error rate of 10%, the 

corresponding type – 1 error rate of the logit model is equal to 4.6% and the area under the ROC 

(AUC) is equal to 0.98.  Of the 25 variables considered, only 4 receive strong support (posterior 

effect probability >= 95%) for inclusion in the model specification, which include nonaccrual 

loans, equity, net income, and brokered deposits.  However, several variables that received very 

strong support for inclusion in 1984 were not averaged over in 2008.These variables include 

17 The risk score is estimated relative to the typical bank for each period examined with the classification cutoffs 
based on the risk scores and failure experience observed during the S & L crisis. 
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loans past due 90 or more days, jumbo CDs, bank size, and the shares of C & I and agricultural 

loans.  The earnings measure and brokered deposits indicator were added to the 2008 model’s 

specification.  

The Cox model is applied to the most recent crisis to estimate the time to bank failure 

between 2/1/2009 and 2/1/2015 when controlling for year-end 2008 bank data.  We find there is 

a great deal of uncertainty in the true model’s specification as 363 different models are averaged 

over by BMA and the best model specification is only 1.4%, likely to be the true model.18   Each 

of the candidate control variables, other than federal funds purchased, is averaged over in the 

2008 BMA model.  Eleven of the variables receive strong support from the data - these variables 

include the four variables strongly supported in the 2008 logit model (nonaccrual loans, equity, 

net income, and brokered deposits) and loans past due, foreclosed real estate, securities, jumbo 

CDs, cash, demand deposits, and the share of consumer loans. Measures that received strong 

support for inclusion in the 2008 Cox model and not the 1984 model included equity, cash, 

deposits, brokered deposits, and the share of consumer loans.  The shares of C& I, commercial 

real estate, and agriculture loans, along with age, size and share of insider loans received very 

strong support for inclusion in 1984 but had minimal posterior effect probabilities in 2008.  We 

find for a dynamic type - 2 error rate of 10%, an incident sensitivity of 71% (type – 1 error of 

29%) at 365 days at risk.  The AUC(t) at 365 days is equal to 0.93 and remains above 0.87 

throughout the 6 years the banks are at risk.  The estimates can also be used to update the risk 

scores of banks that are healthy, unhealthy, and in critical condition – these risk scores, measured 

relative to the mean, are equal to -0.220, 3.083, and 4.957, respectively.  When the next crisis 

18 Uncertainty is expected to be higher for the Cox model due to the challenge of predicting time to failure in the 
presence of heavy censoring (94%).   
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strikes, policymakers can use the Cox model’s coefficients from Table 5, along with the most 

recent bank financial data to create predicted risk scores and apply the cutoffs above to 

determine the range of risks to bank failure.   

6. Conclusions 

Prior to the Great Financial Crisis, one might have viewed the S & L crisis of the 1980s 

as a “one-off”, given the otherwise rarity of bank failures in the United States following the 

Great Depression of the 1930s.  The bank failures that accompanied the crisis and great recession 

remind us that the banking system is always at risk. Therefore, policymakers need to be able to 

understand banks’ exposure to failure early in a crisis period.  Fundamentals of bank financial 

conditions, reflected in the CAMELS acronym, are good predictors of failures.  Their relative 

importance though may change over time, which creates uncertainty as to one’s choice of model 

specification.  We use the failure experience of banks during the S & L crisis to build a 

prediction model applied to the recent financial crisis that accounted for specification 

uncertainty.  When Bayesian model averaging is used, the accuracy of the logit model’s 

estimates of bank failures during the S & L crisis improve the prediction of failures in the period 

2/1/2009-2/1/2010.  Further, we show that BMA also improves the out-of-sample predictive 

performance of survival times with the Cox model for the period 2/1/2009 – 2/1/2015. 

Based on the experience during the S & L crisis, policymakers at year-end 2008 with the 

data available to them would have been able to use a logit model estimated from the S & L crisis 

to correctly identify 106 of the 129 (82%) banks that actually fail in 2009 with a type – 2 error 

rate of 3.8%.   The Cox model’s estimates allow policymakers to think more generally about 

failure patterns over different periods of time.  Policymakers in 2008, using our estimates, would 

identify that 2.0% of banks are in critical condition, 7.0% are unhealthy, and 91% are healthy, 

29 

 



which is quite comparable, despite the massive intervention, to the 1.6% of banks that failed 

within a year, the 4.1% of banks that would fail later during the crisis, and the 92% that remained 

healthy.   When the next crisis strikes, policymakers should look to recent events to base their 

inferences.   
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Table 1 
 
Difference in mean characteristics of failing and non-failing banks  
  
The sample of banks for each crisis period are divided between banks that either fail or do not 
fail during the period - S & L crisis (2/1/1985 – 2/1/1994) and the Great Financial Crisis 
(2/1/2009 -2/1/2015).  The means of the controls reported are measured year-end 1984 and 
2008. 

 S & L Crisis   Great Financial Crisis 
 Failed Non-failed  Failed Non-failed 

Loans past due 90+ days  0.0108*** 0.0064  0.004*** 0.0019 
Nonaccrual loans  0.0143*** 0.0068  0.0542*** 0.0103 
Foreclosed real estate 0.0073*** 0.0036  0.018*** 0.0036 
Equity 0.0887 0.0892  0.0798*** 0.1154 
Net income -0.0059*** 0.0090  -0.0261*** 0.0048 
Securities 0.1578*** 0.2842  0.1113*** 0.2029 
Loan loss reserves 0.0098*** 0.0062  0.0194*** 0.0095 
Jumbo CDs 0.2183*** 0.1035  0.2142*** 0.1585 
Cash  0.1081*** 0.0923  0.0408*** 0.0580 
Demand deposits 0.1681*** 0.1578  0.0629*** 0.1081 
Federal funds purchased 0.012 0.0136  0.0134 0.0167 
Volatile liability expense 0.0915 0.0956  0.0426*** 0.0363 
Charge-offs 0.0123*** 0.0055  0.0144*** 0.0038 
Brokered deposits 0.1227*** 0.0248  0.8152*** 0.3753 
Non-interest expense 0.0396*** 0.0323  0.0355 0.0329 
Insider loans 0.0129*** 0.0054  0.0174** 0.0151 
Dividends 0.0027*** 0.0037  0.0018*** 0.0055 
Age 37.5064*** 55.8927  35.872*** 68.2487 
Size  10.4061*** 10.6093  12.4985*** 11.9514 
Provisions for loan losses 0.0144*** 0.0057  0.022*** 0.0051 
C & I loans 0.2109*** 0.1278  0.0999 0.0976 
Consumer loans 0.1305 0.1264  0.0192*** 0.0455 
Commercial real estate 0.0533*** 0.0440  0.235*** 0.1617 
Agriculture loans 0.0708 0.0681  0.0106*** 0.0446 
Federal funds sold 0.0597 0.0598   0.0301 0.0278 
Number of observations 1100 12924  422 7019 
   *, **, ***, indicate significant differences in means between failed and non-failed banks at 
the 0.10, 0.05, and 0.01 level, respectively. 
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Table 2 
  
Logit model estimates of bank failure (1984) 
  
The logit model uses a cross-section of year-end bank data from 1984 to predict failures in the period 
2/1/1985 - 2/1/1986.  BMA estimates reported include the posterior mean (Coef), standard deviation 
(SE), and effect probabilities (PEP) of the variables averaged over.  The posterior model probability 
(PMP) of the best model averaged over is also reported.  The stepwise model is selected based on 
Akaike's information criterion (AIC). 

 Bayesian model averaging  Stepwise AIC 
 Coef SE PEP  Coef SE  P-value 

Constant 4.043 1.495 100.0  5.842 1.685 0.001 
Loans past due 90+ days  19.454 6.364 95.6  16.608 5.000 0.001 
Nonaccrual loans  17.463 3.832 100.0  14.342 4.084 < .001 
Foreclosed real estate 21.660 4.094 100.0  17.731 4.234 < .001 
Equity -47.505 4.957 100.0  -42.792 5.471 < .001 
Net income - - -  - - - 
Securities - - -  -4.428 1.436 0.002 
Loan loss reserves - - -  - - - 
Jumbo CDs 5.571 1.089 100.0  5.380 1.028 < .001 
Cash  -0.144 0.928 3.1  -6.348 2.846 0.026 
Demand deposits - - -  - - - 
Federal funds purchased - - -  - - - 
Volatile liability expense - - -  - - - 
Charge-offs - - -  - - - 
Brokered deposits - - -  - - - 
Non-interest expense - - -  - - - 
Insider loans - - -  - - - 
Dividends - - -  - - - 
Age 0.004 0.006 30.3  0.012 0.004 0.003 
Size  -0.859 0.139 100.0  -0.891 0.141 < .001 
Provisions for loan losses - - -  7.887 4.577 0.085 
C & I loans 5.075 1.162 100.0  3.716 1.104 0.001 
Consumer loans - - -  - - - 
Commercial real estate - - -  - - - 
Agriculture loans 6.389 0.959 100.0  4.298 0.961 < .001 
Federal funds sold - - -  -6.463 2.782 0.020 
Observations 14024    14024   
Models averaged over 4       
PMP of the best model .62       
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Table 3 
 
Out-of-sample type-1 error rate for year ahead failures 
 
The out-of-sample type - 1 error rate (1 - sensitivity) associated with a type - 2 error rate (1 - 
specificity) of 10%.   The logistic specifications are estimated using year-end data from the 
indicated estimates year, which are then applied to year end data in the prediction year to form out- 
of-sample predictions.   Predictions in 1985 (2008) refer to out-of-sample predictions of failures in 
the period 2/1/1986 - 2/1/1987 (2/1/2008 – 2/1/2009) based on financial conditions at year-end 
1985 (2008) and estimates from the model estimated using year-end data from 1984. 

Estimates 
Year 

Prediction 
Year BMA Stepwise  

Prediction 
Year BMA Stepwise 

1984 1985 7.6% 6.9%  2008 33.3% 39.5% 
1985 1986 7.7% 7.2%  2008 24.0% 22.5% 
1986 1987 23.6% 22.0%  2008 39.5% 44.2% 
1987 1988 1.5% 3.1%  2008 8.5% 16.3% 
1988 1989 4.8% 4.8%  2008 13.2% 14.7% 
1989 1990 1.7% 3.3%  2008 11.6% 15.5% 
1990 1991 13.9% 14.8%  2008 16.3% 17.8% 
1991 1992 2.4% 4.9%   2008 12.4% 14.0% 

 
        
        

 

  

36 

 



Table 4 
 
Cox proportional hazards model estimates of bank failure - S & L Crisis 
 
Cox model estimates of the time to bank failure in days between 2/1/1985 - 2/1/1994.   The control 
variables are measured using year-end bank data from 1984.  BMA estimates reported include the 
posterior mean (Coef), standard deviation (SE), and effect probabilities (PEP) of the variables averaged 
over.  The posterior model probability (PMP) of the best model averaged over is also reported.  The 
stepwise model is selected based on Akaike's information criterion (AIC).   

 Bayesian model averaging  Stepwise AIC 
 Coef SE PEP  Coef SE  P-value 

Loans past due 90+ days  9.886 2.072 100.0  9.099 2.065 < .001 
Nonaccrual loans  7.231 1.863 100.0  6.797 1.861 < .001 
Foreclosed real estate 10.331 1.680 100.0  9.762 1.712 < .001 
Equity -1.411 1.111 68.8  -1.335 0.700 0.056 
Net income -7.043 3.384 84.8  -10.910 1.321 < .001 
Securities -4.158 0.370 100.0  -4.697 0.373 < .001 
Loan loss reserves 0.461 1.992 6.4  - - - 
Jumbo CDs 5.309 0.259 100.0  5.396 0.259 < .001 
Cash  -0.097 0.360 8.4  -1.150 0.472 0.015 
Demand deposits 0.346 0.662 25.8  1.609 0.512 0.002 
Federal funds purchased 0.017 0.177 1.6  - - - 
Volatile liability expense - - -  - - - 
Charge-offs - - -  - - - 
Brokered deposits - - -  - - - 
Non-interest expense -0.886 2.190 17.2  -6.304 2.185 0.004 
Insider loans 4.387 0.795 100.0  4.492 0.834 < .001 
Dividends 0.454 2.519 4.1  11.150 6.304 0.077 
Age 0.005 0.001 100.0  0.005 0.001 < .001 
Size  -0.172 0.034 100.0  -0.201 0.034 < .001 
Provisions for loan losses 1.944 4.178 19.7  - - - 
C & I loans 2.793 0.325 100.0  2.367 0.308 < .001 
Consumer loans - - -  - - - 
Commercial real estate 2.864 0.623 100.0  2.246 0.614 < .001 
Agriculture loans 2.636 0.356 100.0  2.254 0.348 < .001 
Federal funds sold -0.269 0.582 21.5  -1.490 0.497 0.003 
Observations 14024    14024   
Models averaged over 23       
PMP of the best model .30       
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Table 5 
 
Bayesian model averaging estimates of bank failures during the Great Financial Crisis 
 
The logit model estimates whether banks fail in 2/1/2009 - 2/1/2010, and the Cox model estimates time to 
bank failure in days between 2/1/2009 - 2/1/2015.  The control variables for both models are measured 
using year-end bank data from 2008.  BMA estimates reported include the posterior mean (Coef), standard 
deviation (SE), and effect probabilities (PEP) of the variables averaged over.  The posterior model 
probability (PMP) of the best model averaged over is also reported. 

 Logit Model  Cox Model 
 Coef SE PEP  Coef SE PEP 

Constant 0.018 0.757 100.0  - - - 
Loans past due 90+ days  - - -  21.967 5.216 100.0 
Nonaccrual loans  22.251 3.795 100.0  11.315 1.197 100.0 
Foreclosed real estate 10.640 9.409 62.3  12.706 2.189 100.0 
Equity -69.461 6.325 100.0  -34.146 2.468 100.0 
Net income -27.315 7.654 100.0  -11.518 3.902 100.0 
Securities -0.474 1.266 14.5  -2.969 0.686 100.0 
Loan loss reserves - - -  5.191 6.696 43.2 
Jumbo CDs - - -  1.968 0.528 99.8 
Cash  - - -  -3.777 1.645 93.5 
Demand deposits - - -  -5.136 1.274 100.0 
Federal funds purchased - - -  - - - 
Volatile liability expense - - -  2.776 2.503 60.6 
Charge-offs -9.081 12.635 39.0  -6.703 8.085 54.1 
Brokered deposits 1.064 0.398 94.9  0.871 0.139 100.0 
Non-interest expense -2.816 7.019 15.4  -0.990 3.142 10.9 
Insider loans - - -  2.849 3.639 43.7 
Dividends - - -  -45.398 22.326 90.3 
Age - - -  -0.001 0.002 36.0 
Size  - - -  0.000 0.001 0.1 
Provisions for loan losses - - -  2.558 6.303 17.9 
C & I loans - - -  -0.150 0.499 10.6 
Consumer loans -2.260 5.232 18.8  -7.937 2.358 100.0 
Commercial real estate - - -  0.581 0.689 47.8 
Agriculture loans - - -  -0.113 0.595 4.9 
Federal funds sold - - -  1.866 1.503 67.6 
Observations 7441    7441   
Models averaged over 18    363   
PMP of the best model .28    .014   
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Figure 1   

The out-of-sample relationship between type – 2 and type – 1 prediction errors from a logit model 

Prediction errors from identifying bank failures in the year ahead using Bayesian model averaging and 
stepwise selection.  The prediction model in the left panel uses year-end financial data from 1987 to 
estimate the model and uses these estimates along with year-end data from 1988 to predict bank failures 
in the S & L crisis period 2/1/1989 – 2/1990.  The right panel also uses year-end financial data from 1987 
to estimate the logit model and uses these estimates along with year-end data from 2008 to predict failures 
in the Great Financial Crisis period 2/1/2009– 2/1/2010.  
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Figure 2 

Prediction errors from a Cox model of the time to bank failure 

The left panel plots the relation between dynamic type – 2 and incident type – 1 errors at 365 days using 
Bayesian model averaging and stepwise selection.  In-sample accuracy is measured based on the 
estimates of the Cox model using year-end data from 1984 to predict time to failure during the S & L 
crisis period. Out-of-sample accuracy is measured using the earlier period’s estimates, combined with 
year-end data from 2008, to determine out-of-sample risk scores during the Great Financial Crisis.  The 
right panel plots the area under the ROC curve (AUC) at various times and both in and out-of-sample for 
the Cox model estimated using Bayesian model averaging and stepwise selection. 
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